Свойства фенола и его влияние на организм человека. Пдк вредных веществ в атмосферном воздухе Пдк фенола в воздухе жилых помещений

Вследствие активного развития производственных предприятий, заводов, расширения химической промышленности возникает все больше проблем с атмосферным воздухом, а именно, с его химическим и бактериологическим составом. Далеко не всегда производства используют высокотехнические средства для фильтрования выбросов, не говоря уже о том, что огромная часть отрицательных элементов и веществ попадает в воздух, просачиваясь из окружающих человека предметов: мебели, элементов современного дома и т.д. Так, и в количестве, превышающем норму, негативно отображается на самочувствии человека, его здоровье, а также на живых организмах в целом.

Чтобы своевременно предотвратить такое влияние, необходимо проводить исследования атмосферы на присутствие фенола, а главное – на превышение его предельно допустимой концентрации в воздухе. Этим занимаются профессиональные лаборатории экспертов, которые имеют в своем распоряжении специальные исследовательские комплексы, аппараты, а также квалифицированы для проведения анализов подобного рода. Экспертизы могут проводиться как в государственных учреждениях, так и независимыми организациями, такими как некоммерческое партнерство «Федерация Судебных Экспертов».

Независимые эксперты являются настолько же квалифицированными и уполномоченными проводить любые исследования в данной отрасли, как и государственные специалисты, так как каждый частный эксперт в обязательном порядке прошел сертифицирование. После этого он получает право на предъявление официальных заключений и результатов проведенного анализа. Многие отдают предпочтение независимым организациям экспертов, так как они, в отличие от государственных лабораторий, работают в условиях конкуренции и дорожат репутацией. Именно поэтому, клиент получает результаты оперативно, а их качество и точность гарантировано высоки.

Фенол это высокотоксичное вещество, которое в государственном нормативе внесено в категорию «два». Это означает, что химический элемент является достаточно вредным и даже опасным для организма, поэтому, необходимо не только проводить исследования атмосферного воздуха в доме, на рабочем месте или на объекте, но и, при необходимости, внедрять специальные мероприятия по удалению такового из воздуха.

Обнаружить фенол в воздухе рабочей зоны можно довольно часто, особенно если рабочий процесс проходит в непосредственной близости с объектами химической промышленности. Этот химический элемент используется при изготовлении пластмассы, при утеплении домов на строительных площадках или при изготовлении специальных расходных материалов. Кроме того, далеко нередко можно встретить фенол в воздухе квартиры, особенно если это новостройки, так как основная масса современной техники, мебели, и даже отделочных материалов включают в себя ряд высокотоксичных материалов в повышенном уровне концентрации.

Дабы иметь представление о том, насколько вредным является это вещество, государственные органы установили верхние грации – уровни предельно допустимой концентрации (ПДК) элементов (измеряющиеся в мг на м3), при которой, в данном случае, фенол не может сразу же непоправимо повлиять на функционирование организма человека. Так, согласно нормативам и правилам, ПДК фенола в воздухе рабочей зоне не должна превышать 0,3 мг/м3. Уточнение о концентрации в рабочей зоне означает, что элемент будет относительно нейтральным к человеческому организму, если его воздействие не превысит 8 часов 5 дней в неделю.


Учитывая, что фенол в атмосферном воздухе может находиться и вне рабочих или жилых зон, существуют нормы предельно допустимой концентрации и для среднесуточного выброса – 0,003 мг/м3. Такой низкий порог в очередной раз доказывает, что химический элемент очень опасный для всего живого. Этот уровень (а желательно иметь показатели еще ниже) должен встречаться не только на улицах городов, но и непосредственно на объектах, например, в зонах промышленных производств. Также, бывают ситуации, когда происходит разовое воздействие на организм данного вещества. Максимальная разовая ПДК фенола в воздухе ни в коем случае не должна превышать 0,01 мг/м3.

При взаимодействии с фенолом, обязательно необходима дополнительная защита для слизистой глаз и дыхательных путей, особенно, если имеется в виду регулярная работа с данным веществом. Такие условия предопределены ГОСТом, и их невыполнение и пренебрежение такими правилами может негативно сказаться не только на работнике, но и на работодателе, если об этом узнают соответствующие государственные органы контроля. Определение фенола в воздухе может стать толчком для введения очистительных мероприятий, так как элемент имеет свойство очень быстро всасываться в организм и влиять на сердечнососудистую систему, дыхательные пути, легки и бронхи, а также нервную систему, вызывая такие побочные эффекты как: головные боли, потерю сознания, тошноту, головокружение и т.п.

Таким образом, воздух должен регулярно исследоваться и проверяться на соответствие нормам предельно допустимой концентрации фенола, так как в противном случае, последствия могут быть крайне негативными. Обращаясь за помощью к экспертам в исследовательские лаборатории независимого типа, вы можете быть точно уверены, что получите результаты экспертизы в наиболее короткие сроки без необходимости ожидания в очереди государственных центров. НП «Федерация Судебных Экспертов» гарантирует высокую точность и оперативность. Кроме того, НП «ФСЭ» специализируется и на проведении широчайшего ряда других экспертиз, которые не связаны с исследованиями атмосферы: химической, биологической, генетической, медицинской, экономической и других экспертиз.

Стоимость экспертизы

Услуга Протокол исследований Заключение специалиста (досудебная экспертиза, 15-25 страниц) Заключение эксперта (судебная экспертиза, от 15 страниц)
Химический анализ воздуха на тяжелые металлы, хлорорганические соединения, фосфорорганические соединения, фторорганические соединения, оксид углерода (II), оксид углерода (IV), кислород (%), оксиды азота, оксиды серы, сероводород, пары минеральных кислот, органические кислоты, ПАУ, дифосфор пентаоксид, меркаптаны, фенолы (гидроксибензол и производные), формальдегид, полициклические ароматические углеводороды, антрацен, бензол, этилбензол, толуол, этенилбензол (стирол), диметилбензол (ксилолы), фенантрен, кумол, крезол, винилхлорид, дифосфор пентаоксид (Р 2 О 5), меркаптаны (по этантиолу), сложные эфиры карбоновых кислот, бенз(а)пирен, аммиак, амины, взвешенные вещества (пыль), пыль силикатная, асбестовая и др., пыль полиметаллическая и ряд других соединений (всего до 2500 веществ) От 1 400 р. за один показатель в одной пробе От 11 400 р. От 21 400 р.
Бактериологический (микробиологический) анализ воздуха (БАК анализ) 3 000 р. за одну пробу От 13 000 р. От 23 000 р.
Комплексный анализ воздуха (базовый на 14 показателей) 14 000 р. за одну пробу От 24 000 р. От 34 000 р.
Комплексный анализ воздуха (расширенный на 20 показателей) 18 000 р. за одну пробу От 28 000 р. От 38 000 р.
Собрать и обезвредить ртуть. Локализация ртути и определение концентрации паров. До 25 м 2 - 8 000 р. +2 000 р./доп.помещение

Дополнительные услуги:

Экологические проблемы все острее стоят перед современным человечеством. Особенно серьезным вопросом является качество воздуха, который загрязняют выхлопные газы и выбросы промышленных предприятий. Чтобы встретить врага во всеоружии, следует ознакомиться с ПДК вредных веществ в воздухе.

ПДК вредных веществ в атмосферном воздухе

Что же такое ПДК ? ПДК – это предельно допустимая концентрация химических элементов и их соединений в воздухе, которая не вызывает негативных последствий у живых организмов. Нормативы предельно допустимых концентраций вредных веществ утверждаются в законодательном порядке и контролируются санитарно-эпидемиологическими службами (в России – Роспотребнадзором) при помощи токсикологических исследований. ПДК каждого опасного для здоровья вещества входит в ГОСТы, соблюдение которых является обязательным. В случае нарушения норм ПДК каким-либо предприятием на него налагают штраф или вовсе закрывают. Предельно допустимая концентрация устанавливается для людей, которые наиболее подвержены влиянию химикатов (детей, пожилых людей, людей с заболеваниями дыхательной системы и т.д.). Величина ПДК для воздуха измеряется в мг/м3, также предельно допустимая концентрация существует для воды, почвы и продуктов питания.

ПДК вредных веществ в атмосферном воздухе бывает разная:

  • ПДК МР – максимальная разовая концентрация вещества. Она не должна влиять на живые организмы в течение 20–30 минут.
  • ПДК СС – среднесуточная концентрация. Эта ПДК не должна оказывать отрицательного воздействия на живые организмы в течение неопределенно долгого времени.

Классы опасности веществ

По степени воздействия на организм вредные вещества подразделяются на четыре класса опасности. Для каждого класса опасности установлена своя ПДК. Выделяют следующие классы опасности веществ в атмосферном воздухе:

  1. вещества чрезвычайно опасные (ПДК менее 0,1 мг/м3);
  2. вещества высокоопасные (ПДК 0,1–1 мг/м3);
  3. вещества умеренно опасные (ПДК 1,1–10 мг/м3);
  4. вещества малоопасные (ПДК более 10 мг/м3).

Также существует классификация вредных веществ по эффекту воздействия на живой организм. При этом некоторые вещества относятся сразу к нескольким классам:

  • Общетоксические – вещества, вызывающие отравление организма в целом. При их воздействии наблюдаются судороги, расстройства нервной системы, паралич.
  • Раздражающие – вещества, поражающие кожу, слизистую оболочку дыхательных путей, легких, глаз, носоглотки. Длительное воздействие приводит к нарушениям дыхания, интоксикации и летальному исходу.
  • Сенсибилизаторы – химикаты, вызывающие аллергическую реакцию.
  • Канцерогены – одна из самых опасных групп веществ, провоцирующая возникновение онкологических заболеваний.
  • Мутагены – вещества, изменяющие генотип человека. Они снижают сопротивляемость организма к заболеваниям, вызывают раннее старение и могут сказаться на здоровье потомства.
  • Влияющие на репродуктивное здоровье – вещества, вызывающие отклонения в развитии у потомства (необязательно в первом поколении).

Ниже приведена таблица ПДК некоторых вредных веществ в атмосферном воздухе, установленной в Российской Федерации:

Оксид углерода (СО)

Еще одно название оксида углерода, угарный газ, знакомо нам с малых лет. Он часто встречается в быту – например, СО выделяется из-за неисправностей газовых колонок и кухонных плит. Для отравления этим газом нужна совсем небольшая его концентрация. У оксида углерода нет цвета и запаха, что делает его еще опаснее. Интоксикация происходит стремительно, человек может потерять сознание в считанные секунды. Несмотря на то, что класс опасности оксида углерода – четвертый, его воздействие приводит к летальному исходу буквально за несколько минут. Почувствовав трудности с дыханием, головную боль, отсутствие концентрации, снижение слуха и зрения, необходимо по возможности открыть все окна и двери и как можно быстрее покинуть помещение.

Аммиак (NH3)

Аммиак – бесцветный газ с резким, едким запахом. Большинству он известен в качестве десятипроцентного водного раствора – нашатырного спирта. Несмотря на то, что вдыхание паров аммиака имеет возбуждающее действие и помогает при обмороках, с этим газом следует быть осторожнее. Аммиак раздражает слизистую оболочку глаз, вызывает удушье, а при высокой концентрации приводит к ожогам роговицы и слепоте, поражает нервную систему вплоть до необратимых изменений, снижает когнитивные функции мозга, провоцирует возникновение галлюцинаций.

Ксилол (C8H10)

Ксилол относится к третьему классу опасности, он способен вызвать острые и хронические поражения кроветворных органов. Ксилол – это жидкость без цвета, но с характерным запахом, которая применяется как органический растворитель для изготовления пластмассы, лаков, красок, строительного клея. В малых концентрациях ксилол никак не вредит человеку, однако при длительном вдыхании паров ксилола появляется наркотическая зависимость. Также ксилол поражает нервную систему, вызывает раздражение кожного покрова и слизистой глаз.

Оксид азота (NO)

Оксид азота – токсичный бесцветный газ. Он не раздражает дыхательные пути, поэтому человеку сложно его почувствовать. NO взаимодействует с гемоглобином и образует метгемоглобин, который блокирует дыхательные пути и вызывает кислородное голодание. Взаимодействуя с кислородом, газ превращается в диоксид азота (NO2).

Диоксид серы (SO2)

Диоксид серы, или сернистый газ, отличается характерным запахом, похожим на запах горящей спички. Вдыхание SO2 даже в небольшой концентрации может привести к воспалению дыхательных путей, вызвать кашель, насморк и хрипоту. Длительное воздействие провоцирует возникновение дефектов речи, чувства нехватки воздуха, отека легких. Также возможно поражение легочной ткани, но оно проявляется только спустя несколько дней после воздействия. Люди с заболеваниями дыхательной системы, например , наиболее тяжело переносят влияние SO2.

Толуол (C7H8)

Толуол проникает в организм человека не только через органы дыхания, но и через кожу. Симптомы отравления толуолом – раздражение слизистой оболочки глаз, заторможенность, нарушения работы вестибулярного аппарата, галлюцинации. Также толуол крайне пожароопасен и обладает наркотическим воздействием. До 1998 года он входил в состав клея «Момент» и до сих пор содержится в некоторых растворителях для лаков и красок.

Сероводород (H2S)

Сероводород – бесцветный газ с запахом, напоминающим тухлые яйца. Будучи очень токсичным, H2S воздействует в первую очередь на нервную систему, вызывает сильные головные боли, судороги и может привести к коме. Смертельная концентрация сероводорода составляет примерно 1 000 мг/м3. При концентрации от 6 мг/м3 начинаются головные боли, головокружения и тошнота.

Хлор (Cl2)

Хлор в виде газа имеет желто-зеленый цвет и острый раздражающий запах. Одни из первых симптомов отравления хлором – покраснение глаз, приступы кашля, боль в груди, повышение температуры тела. Возможно развитие бронхопневмонии, бронхита. Будучи сильным канцерогеном, хлор провоцирует возникновение раковых опухолей и туберкулеза. При высокой концентрации летальный исход может наступить после нескольких вдохов.

Формальдегид (HCOH)

Содержание в воздухе особенно повышено в больших городах, поскольку он является продуктом горения топлива автотранспорта. Также выбросы формальдегида происходят на химических, кожевенных и деревообрабатывающих предприятиях. Он отрицательно воздействует на генетический материал, репродуктивную и дыхательную системы, печень, почки. Отравление начинается с возрастающего поражения нервной системы – с головокружения, чувства страха, дрожи, неровной походки и т.д. Формальдегид официально признан канцерогеном, однако также обладает аллергенным, мутагенным и сенсибилизирующим действием.

Диоксид азота (NO2)

Диоксид азота – ядовитый газ красно-бурого цвета с характерным острым запахом. Образуется он в результате сгорания автомобильного топлива, деятельности ТЭЦ и промышленных предприятий. На начальном этапе воздействия диоксид азота нарушает работу верхних дыхательных путей, а впоследствии способен вызвать бронхит, воспаление или отек легких. Наиболее опасен этот газ для людей, страдающих бронхиальной астмой и другими легочными заболеваниями. Из-за цвета диоксида азота его выбросы называют «лисьим хвостом». С лисой этот газ связывает не только цвет, но еще и хитрость: чтобы «спрятаться» от людей, он ухудшает обоняние и зрение, поэтому его не так-то просто обнаружить.

Фенол (C6H5OH)

Фенол – один из промышленных загрязнителей, который губителен для животных и человека. При вдыхании паров фенола возникает упадок сил, тошнота, головокружение. Фенол негативно влияет на нервную и дыхательные системы, а также на почки, печень и т.д. Использование фенола часто приводит к плачевным последствиям. В семидесятых годах в СССР его использовали при строительстве жилых домов. Люди, жившие в «фенольных домах», жаловались на плохое самочувствие, аллергию, возникновение онкологических заболеваний и на другие недуги. Хотя фенол-формальдегидные смолы используются при изготовлении мебели, строительных материалов и многого другого, недобросовестные производители могут превышать допустимую норму или применять некачественные химикаты.

Бензол (C6H6)

Бензол – опасный канцероген. При отравлениях парами бензола у человека наблюдается головная боль, тошнота, перепады настроения, нарушения сердечного ритма, иногда – обмороки. Постоянное воздействие бензола на организм проявляется усталостью, нарушениями функций костного мозга, лейкозом, анемией. Зачастую первый признак отравления бензолом – эйфория, так как вдыхание его паров имеет наркотический эффект. Данное химическое соединение входит в состав бензина, используется для производства пластмасс, красителей, синтетической резины.

Озон (O3)

Этот газ с характерным запахом, при высоких концентрациях имеющий голубой цвет, защищает нас от ультрафиолетового солнечного излучения. Озон является природным антисептиком, обеззараживает воду и воздух. Еще в пользу озона говорит то, что воздух после грозы, насыщенный озоном, кажется нам свежим и бодрящим. К сожалению, озон вызывает крайне неприятные последствия. Он усугубляет аллергию, обостряет сердечные заболевания, снижает иммунитет и вызывает нарушения дыхания. Озон действует медленно, но крайне губительно в долгосрочной перспективе – особенно опасен данный газ для детей, пожилых людей и астматиков.

ПРОБЛЕМА НАУЧНОЙ ОБОСНОВАННОСТИ ПДК ФОРМАЛЬДЕГИДА ДЛЯ ВОЗДУХА ЖИЛЫХ ПОМЕЩЕНИЙ СТАЛА ОДНОЙ ИЗ САМЫХ ОСТРЫХ ТЕМ ЭКОЛОГИЧЕСКИХ ДИСКУССИЙ В НАШЕЙ СТРАНЕ. НЕ ПОТОМУ, ЧТО КТО-ТО ЗАЩИЩАЕТ «ВРЕДНЫЙ ФОРМАЛЬДЕГИД», А ПОТОМУ, ЧТО В ХОДЕ ОБМЕНА МНЕНИЯМИ ВЫЯВЛЯЕТСЯ ОБЕСКУРАЖИВАЮЩАЯ КАРТИНА НЕТОЧНОСТИ ИЗМЕРЕНИЙ В ПРАКТИКЕ ОБНАРУЖЕНИЯ ВЫДЕЛЕНИЯ ВРЕДНЫХ ОРГАНИЧЕСКИХ ВЕЩЕСТВ - ФОРМАЛЬДЕГИДА, МЕТАНОЛА, ФЕНОЛА. НО ТОЧНЫЕ ПРИБОРЫ - ГАЗОВЫЕ ХРОМАТОГРАФЫ НЕ ПРИМЕНЯЮТСЯ.
А ЗНАЧЕНИЯ ПДК УСТАНАВЛИВАЮТ НАПЕРЕКОР СУЩЕСТВУЮЩЕЙ МИРОВОЙ ПРАКТИКЕ.

Виктор Хабаров,
ст. научный сотрудник, к.хим.н.,
Институт физической химии
и электрохимии им. А.Н. Фрумкина РАН

Развитие производства и применение композиционных древесных материалов (КДМ) - фанеры, древесностружечных плит (ДСП), древесностружечных плит с ориентированной стружкой (ОСП) и древесноволокнистых плит (ДВП) на основе карбамидо-, меламино- и феноло-формальдегидных (КФ, МФ, ФФ) смол в гражданском и промышленном строительстве, для изготовления мебели и т.д. выдвигают повышенные требования к качественной и количественной достоверности результатов санитарно-химической оценки КДМ в моделированных и натурных условиях эксплуатации по формальдегиду, метанолу, фенолу и аммиаку. Многочисленные научные исследования в этой области говорят, что экологические проблемы производства и применения композиционных древесных материалов являются результатом: - принятия научно необоснованной предельно допустимой концентрации (ПДК) формальдегида 0,01 мг/м3 для воздуха жилых помещений; - снижения ПДК для воздуха жилых помещений фенола с 0,01 до 0,003 мг/м3 и аммиака с 0,2 до 0,04 мг/м3; - необеспеченная получения достоверных количественных результатов стандартами для определения выделения и содержания в фанере и ДСП формальдегида спектрофотометрическим методом с ацетилацетоновым реактивом; - неприменения методов газовой хроматографии (ГХ) для определения санитарно-химических характеристик фанеры, ДСП, ОСП, ДВП, КФ и МФ смол; - отсутствия регламентации ГОСТами содержания метанола и метилаля в КФ и метанола в ФФ смолах; - применения камер из нержавеющей стали для моделирования условий эксплуатации при проведении санитарно-химической оценки КДМ, которые не обеспечивают получение достоверных количественных результатов по формальдегиду, метанолу, фенолу и аммиаку

ОБ ОБОСНОВАННОСТИ ПДК ФОРМАЛЬДЕГИДА, МЕТАНОЛА, ФЕНОЛА И АММИАКА

Доказательной базой о научной необоснованности ПДК формальдегида для воздуха жилых помещений являются:

1) результаты санитарно-химической оценки массива древесины сосны и березы в моделированных условиях эксплуатации в камерах стекла методом ГХ;
2) использование водного раствора формальдегида для построения градуировочного графика при фотометрическом определении формальдегида в воздухе с ацетилацетоновым реактивом и хромотроповой кислотой.

Неприменение метода ГХ и использование водного раствора формальдегида для построения градуировочного графика при определении последнего в воздухе привело к ошибочному установлению величины ПДК формальдегида - 0,01 мг/м3 для воздуха жилых помещений в России. Связано это с тем, что водные растворы формальдегида представляют собой равновесную смесь моногидратаметиленгликоля СН2(ОН)2 и ряда гидратированных низкомолекулярных полимеров или полиоксиметиленгликолей с общей формулой НО(СН2О)nН. Состояние равновесия зависит от температуры и концентрации формальдегида в растворе.

Экспертная оценка существующих спектрофотометрических методик определения формальдегида показала, что методы определения с хромотроповой кислотой и ацетилацетоном неизбирательны и имеют нижнюю границу определяемых содержаний формальдегида 0,06 мг/м3 при заборе 15 л анализируемого воздуха. Не отработана методика отбора проб. Не учитывается влияние на результаты анализа сопутствующих метанола, фенола и других токсичных компонентов. Поэтому указанные методики в ряде случаев некорректны и не могут обеспечить достоверных результатов, особенно при концентрации формальдегида в воздухе ниже 0,06 мг/м3.

Проведённые исследователями, по санитарно-химической оценке, массива сосны и березы методом ГХ показывают, что выделение формальдегида из массива древесины сосны через 6 месяцев кондиционирования образцов в моделированных условиях эксплуатации при насыщенности 2,2 м2/м3, температуре 20, 40°С и газообмене 1 объём/ч составляет 0,15 мг/м3 и 0,165 мг/м3 и превышает ПДК формальдегида для воздуха жилых помещений в 15–17 раз. Концентрация формальдегида 0,15 мг/м3, выделяющегося из массива древесины сосны в моделированных условиях эксплуатации при температуре 20°С, должна быть ПДК формальдегида для воздуха жилых помещений.Опыт цивилизаций показал, что лучшим материалом для строительства жилья для человека является древесина, которая считается безвредной. Всемирная организация здравоохранения (ВОЗ) рекомендовала для воздуха замкнутых помещений и атмосферного воздуха ПДК формальдегида 0,1 мг/м3. Для контроля этого норматива формальдегида в воздухе используют методики на основе метода высокоэффективной жидкостной хроматографии (ВЭЖХ). В Германии установлен запрет на использование древесных (с покрытием и без него) материалов, уровень миграции формальдегида которых в воздушную среду превышает 0,1 ppm (0,124 мг/ м3). Этот же показатель установлен и в отношении мебели. В странах - членах Всемирной торговой организации (ВТО) норматив формальдегида для древесных плит и других полимерсодержащих древесных строительных материалов принят на уровне 0,124 мг/м3.

В России в методических указаниях по санитарно-гигиеническому контролю полимерных строительных материалов присутствовал список «Допустимые уровни (ДУ) выделения вредных химических веществ из полимерных строительных материалов», который содержал 68 химических соединений. Сегодня ни на сайте «Роспотребнадзора» и на сайте информационно-справочной системы «Кодекс» и «Техэксперт» не обнаружишь информации об отмене главным санитарным врачом России списка «Допустимые уровни выделения вредных химических веществ из полимерных строительных материалов». Возникает вопрос: на каком основании этот список не включён в новые методические указания? Сегодня ПДК, используемые в практике органов «Роспотребнадзора», для воздуха жилых помещений установлены самые жесткие в мире: формальдегида 0,01 мг/м3, фенола 0,003 мг/м3, аммиака 0,04 мг/м3. Они приводят к тому, что все строительные технологии с применением фанеры, ДВП и ДСП уже подлежат запрещению. На основе каких же научных данных «Роспотребнадзор» ужесточил норматив фенола в 3,3 раза, а аммиака в 5 раз для воздуха жилых помещений?

О НОРМАТИВНЫХ ДОКУМЕНТАХ
__________________________________________________

Положения законов Российской Федерации «О техническом регулировании», «О санитарно-эпидемиологическом благополучии населения», «Об обеспечении единства измерений», «О стандартизации», «О сертификации» и ГОСТ Р должны выполняться не только независимыми испытательными лабораториями, но и находиться в зоне ответственности производителей КДМ и синтетических смол. Научным сообществом проведен сравнительный экспертный анализ нормативных документов по санитарно-химическим характеристикам фанеры, используемой в гражданском строительстве, объектов транспорта, для изготовления мебели, действующих в странах Евросоюза и России.

В настоящее время страны Евросоюза используют стандарты для определения показателей безопасности фанеры, ДСП и ДВП только по формальдегиду спектрофотометрическим методом с ацетилацетоновым реактивом. Стандарты не предусматривают определение метанола и фенола.

Евросоюзом приняты стандарты для определения санитарно-химических характеристик фанеры, которые применяют при заключении контрактов на ее закупку. Стандартом EN 1084:1995 устанавливается три класса эмиссии формальдегида: А, В, С (при насыщенности объёма камеры поверхностью фанеры 0,06 см2/м3, температуре 60°С и газообмене 15 объёмов/ч в течение 4 ч), которые определяются по стандарту EN 717-2-1995 спектрофотометрическим методом с ацетилацетоновым реактивом. Класс А - до 3,5 мг/м2·ч; класс В - 3,5–8,0 мг/м2·ч; С - более 8 мг/м2·ч. Стандарт EN 1084:1995 применяется к фанере, ДСП и ДВП на основе КФ и
МФ смол. Стандарт не должен применяться к фанере, ДСП и ДВП на основе ФФ смол. В Германии фанера класса эмиссии формальдегида В и С недопустима для применения. Отечественный ГОСТ Р 53867, принятый в 2010 году, дублирует стандарт стран Евросоюза EN 717-2-1995. В России для определения показателей безопасности фанеры, ДСП, ДВП по формальдегиду используют титрометрический метод (ГОСТ 27678-88), спектрофотометрический метод с ацетилацетоновым реактивом (ГОСТ 30255-95 и ГОСТ Р 53867-2010) и не контролируют определение метанола и фенола. ГОСТы не соответствуют уровню требований стран ВТО и современным требованиям внутреннего рынка.

К действующим стандартам стран Евросоюза для определения формальдегида, выделяющегося из КДМ, спектрофотометрическим методом с ацетилацетоновым реактивом, страны - члены ВТО приняли стандарты, которые используют для определения формальдегида в воздухе методом ВЭЖХ с УФ-детектором (ГОСТ Р ИСО 16000-3-2007 и 16000-4-2007). Стандарты по определению формальдегида методом ВЭЖХ по чувствительности и точности уступают методу на основе газовой хроматографии - стандарту предприятия НИОКО «Биоэкомониторинг», который предусматривает определение в пробе формальдегида, метанола, метилаля и избирательное определение фенола, выделяющихся из КДМ.

К ИННОВАЦИОННОЙ МЕТОДОЛОГИИ
__________________________________________

Между тем именно в России в области метрологического обеспечения качества и соблюдения требований показателей безопасности КДМ достигнуты определенные положительные результаты после введения в 1996 году стандарта предприятия НИОКО «Биоэкомониторинг» газохроматографической методики, которая защищена 8 авторскими свидетельствами СССР и изложена в статьях. Для производителей КДМ эта инновационная методология определения санитарно-химических характеристик плит и синтетических смол методом весьма важна. Поэтому расскажем ней подробнее. Методика ГХ предназначена для
определения:

Формальдегида, метанола, метилаля и фенола, выделяющихся из фанеры, ДСП, ОСП и ДВП на основе синтетических смол в моделированных условиях эксплуатации при насыщенности 0,4–2,2 м2/м3, температуре 20, 40°С и газообмене 0,5–5,0 объёма/ч;
- методом ГХ и парофазного анализа (ПФА) определяют также формальдегид, метанол, метилаль и фенол в КДМ и синтетических смолах при температуре 80–85°С;
- методом капиллярной ГХ: летучих органических веществ, выделяющихся из КДМ на основе синтетических смол в моделированных условиях эксплуатации.

Измерение концентраций химических веществ - формальдегида, метанола, метилаля и фенола, выделяющихся из фанеры, ДСП, ОСП и ДВП, проводят в моделированных условиях эксплуатации (мг/м3, мг/м2·ч) и остаточного содержания химических веществ (мг/100 г, % мас.) в КДМ методом ГХ и динамического ПФА. Определение фенола проводят раздельно от формальдегида, метилаля и метанола. Для концентрированная фенола применяют термостойкий пористый полимерный сорбент полихром-3, который не концентрирует формальдегид, метилаль и метанол при комнатной температуре. Для концентрирования формальдегида и метанола применяют термостойкие пористые полимерные сорбенты полифенилхиноксалин или цезийсорб. Сконцентрированные фенол, формальдегид и метанол из патронаконцентратора вводят в аналитическую колонку методом термической десорбции с помощью устройства, которое исключает непробиваемый объём между иглой патрона-концентратора и мембраной испарителя газового хроматографа.

Определение формальдегида, метилаля и метанола в КДМ и КФ смолах проводят методом ГХ и динамического ПФА при температуре 80–85°С путём ввода парогазовой пробы в аналитическую колонку с помощью устройства для ПФА с петлей объёмом 15 см3. Определение формальдегида, метилаля и метанола проводят на колонке с полифенилхиноксалином, а фенола - на колонке с 2% полиэтиленгликольадипината (ПЭГА) на полихроме-1. Для идентификации летучих органических веществ, выделяющихся из КДМ в моделированных условиях эксплуатации, используют стеклянные капиллярные колонки (СКК) с SE-30 и NaCI и многое другое.

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ
_________________________________________

Экспериментальные исследования определения методом ГХ санитарно-химических характеристик фанеры на основе КФ, ФФ смол и КФ смоле опубликованы и приведены результаты их санитарно-химической оценки. Она велась в моделированных условиях эксплуатации методом ГХ и спектрофотометрическим методом с ацетилацетоновым реактивом, а также определяли содержание органических веществ в КФ смоле (табл. 2). Из таблицы 2 следует, что санитарно-химическая оценка фанеры методом ГХ на стеклянной капиллярной колонке (СКК) с SE-30 и NaCI зависит от режима сушки шпона и вида теплоносителя. Фанера из шпона березы, высушенного в газовой сушилке газами при горении природного газа, выделяет 26 органических веществ и из шпона березы, высушенного в газовой сушилке газами при сжигании древесины, - 60 органических веществ. Шпон берёзы, высушенный в паровой сушилке, выделяет 18 органических веществ. Сравнение результатов (табл. 2) фанеры толщиной 8, 9, 15 и 18 мм в моделированных условиях эксплуатации по стандарту предприятия НИОКО «Биоэкомониторинг» показывает, что концентрации выделения формальдегида (мг/м2·ч), полученные методом ГХ, в 2,2–4,9 раза ниже по сравнению с применяемым Евросоюзом спектрофотометрическим методом с ацетилацетоновым реактивом, где стандарт определяет сумму органических веществ, которые ошибочно принимают за формальдегид.

Фанера по классу эмиссии формальдегида по стандарту методом ГХ соответствует классу В, а спектрофотометрическим методом с ацетилацетоновым реактивом - классу С. Ясно, за счет чего стандарты стран Евросоюза занижают сортность фанеры и, соответственно, цены на неё. Из таблицы 2 следует, что в образцах КФ смолы наряду с формальдегидом и метанолом содержится метилаль. В КФ смоле марок КФ 115-53 и КФМТ-15 содержится, соответственно, больше метанола в 1,9 и 2,9 раза и метилаля в 1,4 и 2,5 раза по сравнению с формальдегидом. В исследуемых образцах фанеры методом ГХ не обнаружено метилаля, что указывает на его разложение при прессовании фанеры. Образцы фанеры, содержащие в составе КФ смолы и лигносульфонаты, выделяют больше метанола в 4,2–4,7 раза по сравнению с фанерой, не содержащей лигносульфонатов. Получены санитарно-химические характеристики фанеры на основе КФ смолы, шпона березы и КФ смолы методом ГХ с помощью устройства для ПФА (табл. 3–5). Для разделения смеси, содержащей формальдегид, метанол, воду, метилаль, использовали полифенилхиноксалин. Сравнение результатов таблицы 3 показывает, что при определении методом ГХ с помощью устройства для ПФА в фанере содержится метанола в 7–8 раз больше по сравнению с формальдегидом. Содержание формальдегида в фанере, определенное методом ГХ, ниже в 3,6–7,4 раза по сравнению с титрометрическим методом по ГОСТ . При определении формальдегида в фанере в соответствии по ГОСТ 27678-88 определяется сумма органических веществ, которую ошибочно принимают за формальдегид.

Из таблицы 3 также следует, что шпон березы, высушенный в газовой сушилке, содержит формальдегида в 1,3 раза больше, а метанола в 1,6 раза меньше по сравнению со шпоном берёзы, высушенным в паровой сушилке. В шпоне берёзы, высушенном в газовой сушилке, повышенное содержание формальдегида связано с тем, что при горении природного газа образуется формальдегид, который сорбируется шпоном в газовой сушилке, а пониженное содержание метанола связано с более жестким режимом сушки шпона в газовой сушилке по сравнению с паровой сушилкой. При определении методом ГХ летучих органических веществ в КФ смоле использовали тот же методический подход, что в фанере и шпоне (табл.3). Динамика выделения формальдегида, метанола и метилаля из КФ смолы при температуре 80°С протекает за счёт диффузии.

Из таблицы 4 следует, что в смоле КФМТ-15 содержится больше метанола в 2,4 раза и метилаля в 3,6 раза по сравнению с формальдегидом. Метилаль образуется при хранении технических растворов формальдегида (Уокер ДЖ. Формальдегид / Пер. с англ. М.: Госхимиздат, 1957. - 608 с.). Определение летучих органических веществ, выделяющихся из фанеры на основе КФ смолы в моделированных условиях эксплуатации (табл. 5). Из таблицы 5 следует, что фанера толщиной 9 и 18 мм при насыщенности 0,4 и 1,0 м2/м3 выделяет формальдегида выше ПДК для воздуха жилых помещений в 2,2–8,0 раза. Фанера толщиной 18 мм при насыщенности 1 м2/м3 выделяет метанола выше ПДК в 1,8 раза и в 4–13 раз больше по сравнению с формальдегидом. Это может быть обусловлено следующими факторами:
1) При синтезе КФ смолы использовали водный раствор формальдегида, содержащий высокие концентрации метанола.
2) При хранении водных растворов формальдегида с ними могут происходить следующие изменения:
а) реакция Канниццаро, состоящая в окислении одной молекулы формальдегида до муравьиной кислоты и восстановлении другой до метанола; б) образование метилаля. Методом ГХ проведена также санитарно-химическая оценка российской фанеры толщиной 10 мм из шпона сосны на основе КФ и ФФ смол, в моделированных условиях эксплуатации (табл. 6).

Установлено, что концентрации летучих органических веществ, выделяющихся из этой фанеры (на основе КФ смолы при насыщенности 0,4–2,2 м2/м3) превышает ПДК по формальдегиду в 7–40 раз и не превышает по метанолу; а на основе ФФ смолы при насыщенности 0,4–1,2 м2/м3 превышает ПДК по формальдегиду в 8–25 раз и не превышает по метанолу и фенолу, а при насыщенности 2,2 м2/ м3 превышает ПДК по формальдегиду в 46 раз, метанолу - 1,8 раза и фенолу - 5,7 раза.

БЛАГОДАРЯ КОМУ СТРАНЫ ЕВРОСОЮЗА СНИЖАЮТ СОРТНОСТЬ ФАНЕРЫ
____________________________________________________

Как видим, для определения санитарно-химических характеристик КДМ и синтетических смол необходимо использовать метод ГХ, динамический ПФА и термостойкие полимерные сорбенты для концентрированная - полихром-3, цезийсорб и поли-фенилхиноксалин. Полихром-3 при комнатной температуре избирательно концентрирует из газовой среды фенол, выделяющийся из КДМ, не концентрирует формальдегид и метанол. Полифенилхиноксалин и цезийсорб концентрируют формальдегид и метанол. Применение указанных сорбентов позволяет реализовать методический подход раздельного анализа фенола и формальдегида при комнатной температуре. Метод ГХ, принципиальная схема его реализации, устройство в свое время были взяты на вооружение в нашей стране. Он оказался вполне доступным. Однако последующие события, развал науки, затормозили внедрение. Мы полагаем, что сейчас наступило его время.

Он нужен производителям КДМ и синтетических смол, окажет неоценимую помощь технологам и экологам. Абсолютно точные данные его анализа показывают, что в моделированных условиях эксплуатации в мг/м2·час при температуре 60°С, концентрации выделения формальдегида, полученные методом ГХ, в 2,2–4,9 раза ниже по сравнению со спектрофотометрическим методом с ацетилацетоновым реактивом. Хроматографический метод показывает, что с определением выделения вредных веществ из КДМ - фанеры, ДСП, ОСП, ДВП и других материалов все обстоит совсем не так, как представляют те, кто придумал нормативы содержания формальдегида в КДМ и утвердил методики спектрофотометрического определения формальдегида.

Ведь эти методики не дают точных измерений выделения
формальдегида, но ведут к весьма нежелательным последствиям. Стандарты стран Евросоюза EN 1084:1995 и EN 717-2-1995 занижают сортность фанеры и, соответственно, цены на фанеру. Российские производители фанеры, её экспортеры, теряют валюту, но доказать, что продукция их высокосортная, не могут, потому в России не используют газохроматографические методики определения формальдегида. Закон РФ «Об обеспечении единства измерений» разрешает использовать для сертификации КДМ не только гостированные методики определения вредных органических веществ, но и методики в виде стандарта предприятия, которые должны быть разработаны в соответствии с ГОСТ 8.563-2009 «Методики (методы) измерений» и пройти метрологическую аттестацию.

Очевидно, что нашим министерствам, Росприроднадзору и всем компаниям, кто по-настоящему заботится об экологии, безвредности материалов, безопасности человека и прибыльности бизнеса, необходимо делать поворот к достоверному контролю за выделением из КДМ не только формальдегида, но и метанола и фенола.

Полостью статью читайте в журнале «Химия и бизнес»
№ 5-6 (192)

© Химия и бизнес. Републикация информации только при указании на

Оксиды азота ( N x O y ) класс опасности-3

Оксид азота ( NO )- бесцветный газ с температурой сжижения -151,6 °С затвердевания -163,6 °С. Плохо растворим в воде. Диоксид азота ( NO 2 ) – бледно-желтая жидкость с температурой затвердевания -11,2°С , кипит при температуре +21°С. Пары тяжелее воздуха, имеют бурый цвет и удушливый запах. С водой образует азотную кислоту. Является сильным окислителем: органические смеси загораются, смеси с метаном, бутаном взрываются.

Оксиды азота применяются в производстве азотной кислоты (промежуточные продукты), являются окислителями в жидком ракетном топливе, используются при очистке нефтепродуктов от сероорганических соединений, применяются в качестве катализаторов при окислении органических соединений.

Оксиды азота перевозят в железнодорожных и автомобильных цистернах, контейнерах и баллонах, которые являются временным его хранили щем. Обычно оксиды азота хранят в вертикальных цилиндрических (объемом 50 – 5000 м 3)или горизонтальных цилиндрических (объемом 5 – 100 м 3) резервуарах при атмосферном давлении и при температуре окружающей среды.

Предельно допустимая концентрация (ПДК) оксида (диоксида) азота в воздухе населенных пунктов составляет 0,085 (0,6) мг/м 3 , в воздухе рабочей зоны 5,0 (2,0) мг/м 3 . Порог обонятельного ощущения (для оксида азота)10 мг/м 3 . При концентрации 90 мг/м 3 в течение 15 минут наблюдается раздражение глотки, позывы к кашлю, слюноотделение. Опасными при кратковременном воздействии считаются концентрации 200-300 мг/м 3 , при многочасовом воздействии переносимы концентрации не выше 70 мг/м 3 .

При ликвидации аварий связанных с выбросом (разливом) оксидов азота изолировать опасную зону, удалить из нее людей, держаться с наветренной стороны, избегать низких мест, в зону аварии входить только в полной защитной одежде. Непосредственно на месте аварии и вблизи источника заражения работы проводят в изолирующих противогазах или дыхательных аппаратах (ИП-4м, АСВ-2, АП-96, КИП-8) исредствах защиты кожи (Л-1, КИХ-4, КИХ-5 и др.). Для выхода из зоны заражения и при работе в условиях ЧС на удалении от источника заражения 300-500 м используют фильтрующие промышленные противогазы с коробками марки В и патрон защитный универсальныйПЗУ-К.

Средства защиты

Время защитного действия (час) при концентрациях (мг/м 3)

Наименование

Марка

коробки

5000

Промышленные противогазы: большого габарита

В с/ф

В с/ф

Патрон защитный универсальный

Противогаз ракетных войск

ПРВ-М (Р)

Наличие оксидов азота определяют:

Универсальный газоанализатор УГ-2 с индикаторной трубкой на оксиды азота с диапазоном измерений 0-200 мг/м 3 ;

Мини-экспресс-лаборатория МЭЛ с диапазоном измерений 2,5-50 мг/м 3 ;

Химический газоопределитель промышленных выбросов ГХПВ-2 с индикаторной трубкой на оксиды азота с диапазоном измерений 0-30, 0-200 мг/м 3 ;

Лаборатория «Пчелка-Р»с использованием индикаторных трубок на оксиды азота с диапазоном измерений 2,5-50,1-100 мг/м 3 ;

Стационарный газоанализатор ЭССА;

Персональный индикатор-сигнализатор«МЕГАКОН».

Нейтрализуют оксиды азота 10%-ным раствором щелочи (например, 100 кг едкого натра и 900 литров воды) или водой с расходом 8-9 тонн на 1 тонну оксидов азота. При необходимости понижения температуры замерзания раствора щелочи добавляют моноэтаноламин.

Для осаждения паров используют распыленную воду. Для распыления воды или растворов применяют авторазливочные станции (АРС-14, АРС-15), тепловые специальные машины (ТМС-65), пожарные машины,а также имеющиеся на химически опасных объектах гидранты и спецсистемы.

В случае разливасжиженных оксидов азота место разлива промывают большим количеством воды, изолируют песком, воздушно-механической пеной, обваловывают и не допускают попадания веществ в поверхностные воды. Для утилизации загрязненного грунта на месте разлива при нейтрализации оксидов азота срезают поверхностный слой грунта на глубину загрязнения, собирают и вывозят на утилизацию с помощью землеройно-транспортных машин (бульдозеров, скреперов, автогрейдеров, самосвалов). Места срезов засыпают свежим слоем грунта, промывают водой в контрольных целях.

Действия руководителя: изолировать опасную зону , удалить из нее людей, держаться с наветренной стороны, избегать низких мест, не курить. В зону аварии входить только в полной защитной одежде.

Оказание первой медицинской помощи:

В зараженной зоне: обильное промывание глаз водой или2%-ным раствором питьевой соды, надевание противогаза на пострадавшего, эвакуация на носилках транспортом.

После эвакуации из зараженной зоны : обильное промывание глаз водой или 2%-ным раствором питьевой соды, обработка пораженных участков кожи водой, мыльным раствором, покой, немедленная эвакуация в лечебное учреждение. Вдыхание в течение нескольких минут противодымной смеси, хромосмон 20-40 мл внутривенно, капельно. Ингаляции кислородом не проводить.

Фенол С 6 Н 5 ОН – искусственное соединение с резким характерным запахом.

Имеет низкую температуру плавления, характеризуется способностью растворяться в органических и неорганических растворителях.

При температуре свыше 70°С в любых соотношениях растворяется в воде.

Это промышленный загрязнитель, который является крайне токсичным для человека и животных.

Негативное влияние фенола на человека

  • При вдыхании фенол вызывает нарушение деятельности нервной и сердечнососудистой системы.
  • Пары и раствор фенола оказывают раздражающее действие на кожу, слизистые оболочки дыхательных путей и глаз, провоцируя химические ожоги, а также поражают внутренние органы, особенно почки и печень.
  • Попав на кожу, фенол быстро всасывается, даже при целостных кожных покровах, и спустя несколько минут оказывает воздействие на ткани головного мозга.
  • Вначале появляется кратковременное возбуждение, а затем — паралич дыхательного центра.
  • Даже незначительные дозы фенола вызывают кашель, чихание, головокружение, головную боль, тошноту и упадок сил.
  • Для тяжелых случаев отравления характерно бессознательное состояние, синюшностью кожи и слизистых оболочек, холодный пот, нечувствительность роговицы, едва ощутимый пульс, судороги.
  • Часто фенол вызывает развитие онкологических заболеваний. Со временем фенол не теряет токсические свойства, и для человека его опасность не снижается.
  • При попадании внутрь это крайне опасное вещество может вызвать атрофию мышц, язвенные заболевания, внутренние кровотечения.

Время вывода фенола из организма — 24 часа, однако за этот период он способен нанести непоправимый вред организму на долгие годы. Смертельная доза для взрослого человека составляет 1-10 граммов, для детей 0,05-0,5 грамма.

Каковы нормы фенола в воздухе?

Фенол относится к веществам II — высокого класса опасности. Его нормы в атмосферном воздухе установлены для предотвращения, сокращения или исключения вредного воздействия на организм человека.

При этом устанавливают нормативы, которые рассчитаны на короткий период воздействия (максимально-разовая концентрация) и на более длительный (среднесуточная концентрация).

Предельно допустимая концентрация (ПДК) фенола в окружающем атмосферном воздухе – это концентрация, которая не оказывает косвенного или прямого неблагоприятного действия в течение всей жизни на настоящее или будущее поколение, не снижает работоспособность и не ухудшает самочувствие человека и санитарно-бытовых условий его жизни.

Предельно допустимая максимально-разовая в воздухе населенных мест — это концентрация, которая при вдыхании на протяжении 20-30 минут не должна вызывать в организме человека рефлекторных реакций. Для фенола ПДК МР = 0,01 мг/м³.

Предельно допустимая среднесуточная концентрация фенола в воздухе населенных мест – это концентрация, которая не должна оказывать прямого или косвенного негативного воздействия на человека при неопределенно долгом вдыхании. Для фенола ПДК СС = 0,003 мг/м³.