Закон бука определение физика. Физика: основные понятия, формулы, законы. Основные законы физики, которые должен знать человек. Дополнение Марка Дэвисона

Закон Всемирного Выдавливания

© Буков Александр Анатольевич

10 красота неба, слава звёзд, блестящее украшение, владыка на высотах!

11 По слову Святого звёзды стоят по чину и не устают на страже своей.

Сирах, 43

Утверждают, что мы живем в мире, в котором правит закон Всемирного Тяготения. Однако, оглядевшись по сторонам, мы обнаружим, что находимся на улице с двусторонним движением. Какие-то предметы действительно падают, тонут, давят и так далее в полном соответствии с законом Всемирного Тяготения, но другие предметы на наших глазах поднимаются, взлетают, всплывают, подчиняясь такому же неумолимому закону Архимеда (рис.1). Причем, силы, определяемые этими законами, действуют на конкретный предмет в противоположных направлениях. А может, эти законы описывают разные стороны одной медали? В самом деле, если мы погрузим предмет в сосуд с водой, находящийся в условиях невесомости, то никакой выталкивающей Архимедовой силы не возникнет. Куда она подевалась? Это же беззаконие! Получается, что Закон Архимеда действует только в условиях гравитации?! А будет ли возникать так называемое тяготение, если предположить, что старина Архимед отменил свой закон? Нет, не будет! Потому что закон Всемирного Тяготения Ньютона – это тот же самый закон Архимеда, но с противоположным знаком. Точнее, оба эти закона – разные проявления одного и того же фундаментального закона Всемирного Выдавливания . В общих чертах его можно сформулировать так: на тело, находящееся в среде с переменным давлением (неравномерной плотностью) действует сила, пропорциональная градиенту давления среды в месте нахождения тела, разности плотностей тела и среды, объему среды, занимаемому телом, и направленная в ту сторону, где плотность среды ближе к плотности данного тела . Действительно, если тело тонет или всплывает, то только до тех пор, пока его плотность не сравняется с плотностью окружающей жидкости. Приведённая формулировка включает в себя и закон Архимеда и закон Всемирного Тяготения.

Рис.1. Движение тел в различных средах

Механизм действия закона Всемирного Выдавливания можно выразить словами «мир тесен», то есть на любое тело со всех сторон воздействует (теснит) внешняя среда. Тело находится в покое или движется по инерции, если действие внешней среды на него со всех сторон одинаково. Если воздействие неравномерно – возникает результирующее усилие, придающее телу ускорение.

Вода выталкивает (выдавливает) погруженное в неё тело благодаря увеличению давления по глубине (ведь никто не утверждает, что всплывающий пузырёк воздуха притягивается воздухом над поверхностью воды). Космической средой, выдавливающей из себя материальные тела (звёзды, планеты, астероиды и так далее), является эфир , образующий реальное пространство, представляющее собой огромное облако сдавленных мельчайших (в масштабах микромира) идеально круглых, идеально упругих неделимых материальных шариков , не обладающих ни зарядами, ни полями (именно они, согласно Демокриту, должны были быть названы атомами, но История распорядилась иначе). К эфирным шарикам неприменим искусственный параметр – время. Они вечны, поскольку не существует событий, способных оставить след в их структуре (потому что отсутствует сама структура). Характеристики эфирных шариков: диаметр, инерционность, упругость – являются самыми фундаментальными константами нашего Мира. По своим свойствам эфир можно условно сравнить со сверхтекучей жидкостью, при этом он имеет признаки всех возможных агрегатных состояний вещества (в том числе и твердого), что неудивительно, так как эфир является исходным материалом для построения атомов всех веществ. Механизм выдавливания тел из эфира тот же, что и из жидкости – неравномерное давление эфира на объект с разных сторон. Недаром употребляют словосочетание «глубины космоса». Мы ныряем в эти глубины на космических аппаратах преодолевая силу выталкивания эфира. Рассмотрим, как она возникает.

Согласно теории эфира* любой материальный объект состоит из атомов, представляющих собой скрученные торообразные эфирные жгуты, в которых частицы эфира вращаются вокруг кольцевой оси тора. Такое движение частиц эфира (эфирных шариков) в сдавленной эфирной среде приводит к увеличению объема, занимаемого эфирными шариками атома по сравнению с тем же их количеством в состоянии покоя, соответствующего так называемому (ошибочно) абсолютному вакууму, а на самом деле – чистому невозмущённому эфиру. Представьте, к примеру, что пассажиры автобуса в час пик вместо того, чтобы плотно и спокойно стоять (как кильки в банке), разобьются по группам и начнут водить хороводы. На сколько уменьшится вместимость автобуса? Чем больше эфирный торообразный жгут (круг хоровода), то есть атом более тяжелого элемента, тем он менее устойчив. От распада его может удержать только внешнее давление. Если оно недостаточно – атом распадается. При этом частицы распавшегося атома (меньшие хороводы) занимают меньший объем, создавая эфирное разрежение (больше свободного места в автобусе), а избыточная кинетическая энергия торообразного жгута излучается в виде эфирных волн. Количество этой энергии определяется объемом абсолютной пустоты , которая удерживалась от заполнения эфирным жгутом атома и была заполнена эфиром при его распаде. Чем больше атомов распадается в определенном объёме, тем больше в нём свободного места и, следовательно, меньше локальное эфирное давление в этом объёме. Чем меньше эфирное давление, тем больше распадается неустойчивых атомов. Как видно, это процесс с положительной обратной связью, и от мгновенного и полного распада всех атомов удерживает только огромное давление окружающего эфира. Кстати, можно искусственно создать ситуацию, получив высокую концентрацию тяжелых неустойчивых атомов в некотором объеме, которая приведет к цепной реакции их распада, известной как атомный взрыв. Причина этого – локальное снижение давления эфира, вызванное самопроизвольным распадом некоторых атомов, и влекущее лавинообразный распад неустойчивых атомов. Но мы отвлеклись.

Итак, наиболее плотной эфирной средой является межзвёздное пространство (очевидно, в этом смысле в Библии употребляется выражение «небесная твердь»), а наличие атомов вещества в определенном объеме снижает в нём эфирную плотность. Таким образом, любое материальное тело в космическом пространстве является менее плотным по отношению к окружающей его среде и испытывает давление эфира. Если атомы тела достаточно устойчивы, то его конструкция выдерживает это давление. Если же атомы распадаются и занимаемый ими объем уменьшается, то окружающий эфир начинает занимать освободившееся место, всасываясь телом как губкой. Тут следует уточнить, что уменьшение объема, занимаемого атомами тела, может происходить не только в результате их распада, но и в результате более сложных превращений, известных как термоядерные.

Параметром, характеризующим уменьшение эфирной плотности в объеме тела или объем вытесненного его атомами эфира, является масса тела. Поэтому массу логичнее было бы измерять в единицах объема. Следует различать две массы: первая характеризуется объемом вытесненного движением эфирных шариков в атомах тела, вторая – объемом эфира, поглощаемого в единицу времени в результате распада его атомов. Тело, обладающее только первой инертной гравитационной массой или короче инерционной массой (его атомы не распадаются), поддается гравитационному воздействию, но само его не вызывает – не может «притягивать» другие тела. Тело, обладающее второй, активной гравитационной массой или просто гравитационной массой (пожиратель эфира) и, само собой, – первой, способно не только выдавливаться эфиром к другим телам, но и создает эфирное разрежение вокруг себя, воздействуя тем самым на окружающие объекты в виде так называемого притяжения. В качестве аналогии с условиями закона Архимеда для инерционной массы можно привести шарик от пинг-понга в толще воды – он никак не взаимодействует с таким же шариком, а для гравитационной массы – сливное отверстие в ванной (вот оно-то «притягивает» шарики). К примеру, атомный реактор ледокола (как целый объект) обладает гравитацией, так как внутри него происходит распад атомов, а все остальные конструкции корабля гравитацией не обладают, несмотря на свою инерционную массивность.

Но вернёмся в космос. Представим, что в равномерно сдавленной межзвёздной эфирной среде появился материальный объект (можно иметь в виду наше Солнце, например), состоящий из распадающихся атомов или атомов, испытывающих термоядерные превращения, то есть своего рода эфирная дыра, в которую начинает втягиваться окружающий эфир (рис.2). В результате, окружающий эфир начинает двигаться со всех сторон к объекту. Через какое-то время это движение принимает устойчивый характер. Каковы параметры устоявшегося движения эфира? Для ответа на этот вопрос проведём следующие рассуждения.


Рис.2. Движение эфира к центру небесного тела

Выделим две условные концентрические сферы вокруг небесного тела: на расстоянии r 1 и на расстоянии r 2 от центра. При равномерном поглощении эфира небесным телом, через эти сферы в единицу времени в направлении центра проходит одинаковое количество эфира, которое можно выразить через объем W , равный произведению площади сферы S = 4 π r 2 для данного радиуса на скорость движения эфира v через эту сферу. Поскольку через различные сферы должно проходить одно и то же количество эфира, то W 1 = W 2 , откуда следует, что 4 π r 1 2 v 1 = 4 π r 2 2 v 2 , то есть r 1 2 v 1 = r 2 2 v 2 = r 2 v ( r ) = const . Таким образом, скорость движения эфира к центру небесного тела обратно пропорциональна квадрату расстояния до него: v ( r ) = const / r 2 .

При этом скорость эфира для каждого радиуса пропорциональна ускорению: v ( r ) = g ( r ) ·t (t – время), следовательно, и центростремительное ускорение движения эфира будет также обратно пропорциональное квадрату расстояния до центра: g ( r ) = K / r 2 , где K – коэффициент пропорциональности, величина постоянная для конкретного объекта, определяемая количеством и скоростью распада его атомов (точнее, количеством поглощаемого им в единицу времени эфира, условной характеристикой чего является масса гравитации M ).

Так как эфир ускоренно движется в сторону небесного тела, это означает, что часть давления эфира затрачивается на это движение. Следовательно, давление эфира по направлению к телу, обладающему гравитационной массой будет падать пропорционально этому ускорению:

P = Р 0 K P / r 2 ,

а градиент давления – увеличиваться:

dP / dr = K P / r 2 .

Плотность и давление эфира связаны прямо пропорционально, следовательно, плотность эфира будет также падать по направлению к центру гравитации:

ρ = ρ 0 K ρ / r 2 .

Это падение давления-плотности эфира является точно таким же механизмом, обеспечивающим гравитационное воздействие на любое тело, как и механизм падения давления-плотности жидкости (газа) по высоте, обеспечивающий выталкивающую Архимедову силу, действующую на погруженное тело. Таким образом, так называемое гравитационное воздействие – это простое механическое выдавливание тела из более плотных областей эфирной среды в менее плотные . Поскольку сопротивление трения эфира ничтожно, именно неравномерность давления эфира по степени удаления от источника гравитации обеспечивает гравитационное воздействие на тела, обладающие инерционной массой.

При этом, если какое-либо небесное тело, массой инерции m попадет в зону действия другого объекта с гравитационной массой M , то в направлении центра гравитации на него будет действовать выдавливающая сила эфира F , пропорциональная объему вытесненного первым телом эфира (как в законе Архимеда – вытесненной жидкости), и градиенту давления эфира (что следует ввести и в закон Архимеда применительно к жидкостям и газам). Поскольку объем вытесненного эфира характеризуется массой инерции, а градиент давления пропорционален массе гравитации и обратно пропорционален квадрату расстояния до центра гравитации, то

F = m·K / r 2 = γ·m·M / r 2 ,

где γ – коэффициент пропорциональности, приводящий размерность входящих в формулу параметров к размерности силы, получивший название гравитационной постоянной.

Следует оговориться, что эта известная формула так называемого закона Всемирного Тяготения подразумевает, что одно из двух тел обладает гравитационной массой. Другое тело гравитационной массой не обладает или ее значение пренебрежимо мало. Если оба тела обладают гравитационной массой, то на каждое из них будет действовать сила:

F = F 1 + F 2 = m 1 ·K 2 / r 2 + m 2 ·K 1 / r 2 = γ·(m 1 ·M 2 + m 2 ·M 1) / r 2 .

Для нескольких тел, обладающих гравитацией, результирующее взаимодействие будет определятся векторной суммой сил.

Продолжим рассуждения. Эфир, двигаясь к телу, обладающему гравитацией, как бы сливается со всех сторон в сферическое отверстие. При этом происходит то, что мы часто видим при сливе воды в ванной: поток эфира срывается в эфироворот , который постепенно увлекает во вращательное движение и само центральное тело. При этом эфироворот двусторонний. Разделяющая его плоскость, ортогональная оси эфироворота, становится экваториальной. Для Солнечной системы это – неизменная плоскость Лапласа близкая к плоскости эклиптики. В данной плоскости эфир почти не движется в сторону центра материального объекта, а вращается вокруг него.

Поскольку в экваториальной плоскости центростремительное движение эфира превратилось во вращательное, то его центробежное ускорение a должно быть равным центростремительному g . Следовательно:

a = K / r 2 (1).

Линейная (тангенциальная) скорость вращения: v = ( a r ) 1/2 . Подставив в это выражение формулу (1), получим:

v = ( K / r ) 1/2 (2).

Угловая скорость вращения и линейная скорость связаны зависимостью: ω = v / r . Подставив сюда формулу (2), получим:

ω = ( K / r 3 ) 1/2 (3).

Зависимость периода обращения от угловой скорости определяется выражением: T = 2 π / ω . Подставив формулу (3), получим:

T = 2 π ( r 3 / K ) 1/2 (4).

Для окружности в экваториальной плоскости радиуса r 1 период обращения эфира будет равным T 1 = 2 π ( r 1 3 / K ) 1/2 , а для окружности радиуса r 2 период обращения определится как T 2 = 2 π ( r 2 3 / K ) 1/2 . Откуда следует, что отношение квадратов периодов вращения эфира по двум различным окружностям экваториальной плоскости равно отношению кубов соответствующих радиусов:

T 1 2 / T 2 2 = ( r 1 ) 3 / ( r 2 ) 3 .

Для материальных объектов, вращающихся в потоке эфира в экваториальной плоскости (например планет Солнечной системы в неизменной плоскости Лапласа), последняя формула известна как первый закон Кеплера , открытый эмпирическим путем.

Из формулы (4) следует, что константа K = 4 π 2 r 3 / T 2 .Для Солнечной системы постоянная K вычисляется наиболее точно с помощью параметров Земной орбиты, так как для нее T = 1 з.г. (земной год) и r = 1 а.е. (астрономическая единица), при этом K = 39,4784176 [(а.е.) 3 /(з.г.) 2 ] .

Таким образом, движение эфира вокруг небесного тела представляет собой двусторонний эфироворот (эфирный вихрь) (рис.3). В плоскости Лапласа эфир совершает круговое движение. Чем дальше от плоскости Лапласа, тем по всё более острой конусной спирали движется эфир и захваченные его потоком материальные тела к центральному небесному телу. На его полюсах направление движения эфира практически вертикально. Понятно, что при таком движении эфира, все материальные тела, попавшие в зону действия его эфироворота, в конце концов, либо упадут на центральный объект (Солнце), либо окажутся выдавленными в плоскость Лапласа и будут вращаться вокруг него. Очевидно, что именно так сформировались орбиты планет Солнечной системы и, в свою очередь, орбиты естественных спутников планет. Это же объясняет, почему плоскости орбит планет не расходятся относительно неизменной плоскости Лапласа. Кроме этого, вращающийся поток эфира – источник энергии, подпитывающий движение планет вокруг Солнца по стабильным орбитам. Если бы они двигались только по инерции, как это следует из закона всемирного тяготения, то быстро поп á дали бы на центральное тело из-за торможения, вызванного, к примеру, взаимным гравитационным воздействием.


Рис.3. Движение эфира вокруг небесного тела

Движение эфира возле источника гравитации в виде двустороннего эфироворота (вихря) является закономерным. Это проявляется и в движении естественных спутников вокруг планет, и в движении планет вокруг звёзд, и в движении звёзд в галактиках (недаром многие из них напоминают водовороты).

В реальных земных условиях все тела находятся одновременно в двух средах – вещественной (газы, жидкости) и всепроникающей эфирной. Выдавливающее действие этих сред противоположно друг другу, поскольку, чем больше эфира, тем меньше вещества и, наоборот, поэтому так называемая сила тяготения (сила выдавливания эфира) противоположна по направлению Архимедовой силе (силе выдавливания вещественной среды ) . Соотношение плотностей самого тела, окружающих его сред и градиенты давлений в этих средах и определят направление движения конкретного тела в соответствии с законом Всемирного Выдавливания.

Исходя из выше изложенного, можно сделать вывод, что инерционная масса в законе Всемирного Тяготения это количество эфира, который вытесняется в результате движения эфирных шариков в атомах тела из пространства им занимаемого, аналогично количеству жидкости вытесняемой телом в законе Архимеда. Иными словами, инерционная масса – своего рода ёмкость, которую может заполнить окружающий тело эфир.

Инерционная масса является потенциально гравитационной. При падении давления окружающего эфира до определенного критического значения начинается массовый распад самых тяжелых атомов объекта, которые до этого были устойчивыми. Окружающий эфир начинает втягиваться в тело, которое таким образом стало обладать гравитационной массой, характеризующей величину потока эфира внутрь тела.

Каково же общее направление развития нашего Мира?

Отсутствие внешних границ и избыточное эфирное давление в центре приводит к расширению эфирного облака нашей Метагалактики (эффект, известный как «расширяющаяся вселенная»). Другими словами, избыточное давление эфира является источником пресловутой темной или призрачной энергии вселенной, обеспечивающей разлёт её галактик. Расширение эфирного облака в свою очередь приводит к падению общего эфирного давления, что обуславливает распад атомов всё более легких элементов. Если этих атомов в каком-либо объекте достаточно много, то их распад приводит к значительным изменениям и оставляет след в структуре объекта. Для Земли, например, такие массовые распады атомов отмечены сменами геологических эпох. В настоящее время происходит распад атомов урана и трансурановых элементов. Ну , а последними распадутся атомы водорода.

Аминь.

г.Липецк

декабрь 2004 г.

__________________________________________________________________

*) Антонов В.М. Эфир. / Липецк, ЛГПИ, 1999.– 160 с. ()

Кстати, хотелось бы спросить физиков, продолжающих упорно отрицать существование эфира (а также тех, кто стыдливо рассуждает о «физическом вакууме»): а на какой базе вы хотите построить единую физическую картину мира? Где у вас та единая основа, которая обеспечивает взаимодействия в микромире, макромире, мире космоса? Или так и будете бесконечно тащить за собой совершенно разные, не связанные между собой физики со своими постулатами и парадоксами, само наличие которых говорит об их неадекватном отражении реальности. Впрочем, дело ваше, настоящие баталии грядут между сторонниками различных концепций эфира. Физика с концепцией эфира, изложенной в указанной ссылкой работе, является единой, так как все существующие взаимодействия между материальными объектами, в том числе так называемые электрические, магнитные, гравитационные, ядерные и так далее, сводятся в ней к чисто механическим.

Пункт 1

Бука Закона - чуть ли не единственный представитель годвилльской фауны, которого ненавидят и втайне мечтают убить как герои, так и монстры. Мало того, известна попытка бога монстров если не изничтожить на корню, так хотя бы перевести неугодного из монстрячьего в любое другое сословие, но Бука Закона всего на шестистах пятнадцати листах доказал, что это незаконно, а когда ему, отчаявшись, предложили одновременно ковчег , лавку и дирижабль, монстр возмущённо заявил, что его миссия - поддерживать закон и порядок на земном диске, базируясь на своде законов подлости в пяти томах и некоторых положениях закона Линча . Пытаясь подыграть начальству, наивный Модератор Годвилля без должной подготовки обвинил было Буку Закона в нарушении пункта 4.6 ПХТ (самовольное модерирование), но был безжалостно обсмеян, расплющен, раскатан и был вынужден принести публичные извинения с выплатой морального ущерба морковкой и капустой.

Пункт 2

Встретив героя, Бука Закона успевает зачитать обвинительное заключение (как правило, с формулировкой «Порча имущества, сопряжённая с убийством с особой жестокостью на почве личной неприязни» или же «Открытое насильственное вооружённое организованное безвозмездное обращение чужого имущества в собственную пользу в корыстных целях») и принести клятву («Клянусь беспристрастно наказать этого героя и никого, кроме героя!»)

Оружие монстра - острозаточенные формулировки и цунами слов, защита - бумажный вал, выжимка из сухого закона и призванные свидетели. Взять на измор Буку Закона невозможно: хотя он довольно легко убивается любым оружием, герои (да и монстры) склонны верить мифу, утверждающему, что вместо убитого Буки Закона появляется два, поэтому предпочитают заткнуть уши, закрыть глаза и убежать.

Пункт 3

Но если пути отхода перекрыты и единственный выход - убийство, помните: монстра нужно разрубить на мельчайшие кусочки, не оставив шанса жукам-монстроуборщикам . Ведь любой оставшийся кусок размером больше кулака начинает нараспев произносить: «Настоящим я, Бука Закона, вследствие полученных травм, несовместимых с жизнью, передаю герою все принадлежащие мне права, требования, преимущества и другие интересы на собственность, именуемую трофей , совместно с упаковкой, с правом ломать, изучать, крафтить , использовать в качестве наживки, лекарства и оружия и иначе употреблять, используя для этого любого рода приспособления, как существующие в настоящее время, так и изобретённые позднее, или без использования упомянутых приспособлений, а также передавать ранее именованную собственность третьим лицам в возмездном или безвозмездном порядке…»

Интересоваться окружающим миром и закономерностями его функционирования и развития природно и правильно. Именно поэтому разумно обращать свое внимание на естественные науки, например, физику, которая объясняет саму сущность формирования и развития Вселенной. Основные физические законы несложно понять. Уже в очень юном возрасте школа знакомит детей с этими принципами.

Для многих начинается эта наука с учебника "Физика (7 класс)". Основные понятия и и термодинамики открываются перед школьниками, они знакомятся с ядром главных физических закономерностей. Но должно ли знание ограничиваться школьной скамьей? Какие физические законы должен знать каждый человек? Об этом и пойдет речь далее в статье.

Наука физика

Многие нюансы описываемой науки знакомы всем с раннего детства. А связано это с тем, что, в сущности, физика представляет собой одну из областей естествознания. Она повествует о законах природы, действие которых оказывает влияние на жизнь каждого, а во многом даже обеспечивает ее, об особенностях материи, ее структуре и закономерностях движения.

Термин «физика» был впервые зафиксирован Аристотелем еще в четвертом веке до нашей эры. Изначально он являлся синонимом понятия "философия". Ведь обе науки имели единую цель - правильным образом объяснить все механизмы функционирования Вселенной. Но уже в шестнадцатом веке вследствие научной революции физика стала самостоятельной.

Общий закон

Некоторые основные законы физики применяются в разнообразных отраслях науки. Кроме них существуют такие, которые принято считать общими для всей природы. Речь идет о

Он подразумевает, что энергия каждой замкнутой системы при протекании в ней любых явлений непременно сохраняется. Тем не менее она способна трансформироваться в другую форму и эффективно менять свое количественное содержание в различных частях названной системы. В то же время в незамкнутой системе энергия уменьшается при условии увеличения энергии любых тел и полей, которые вступают во взаимодействие с ней.

Помимо приведенного общего принципа, содержит физика основные понятия, формулы, законы, которые необходимы для толкования процессов, происходящих в окружающем мире. Их исследование может стать невероятно увлекательным занятием. Поэтому в этой статье будут рассмотрены основные законы физики кратко, а чтобы разобраться в них глубже, важно уделить им полноценное внимание.

Механика

Открывают юным ученым многие основные законы физики 7-9 классы школы, где более полно изучается такая отрасль науки, как механика. Ее базовые принципы описаны ниже.

  1. Закон относительности Галилея (также его называют механической закономерностью относительности, или базисом классической механики). Суть принципа заключается в том, что в аналогичных условиях механические процессы в любых инерциальных системах отсчета проходят совершенно идентично.
  2. Закон Гука. Его суть в том, что чем большим является воздействие на упругое тело (пружину, стержень, консоль, балку) со стороны, тем большей оказывается его деформация.

Законы Ньютона (представляют собой базис классической механики):

  1. Принцип инерции сообщает, что любое тело способно состоять в покое или двигаться равномерно и прямолинейно только в том случае, если никакие другие тела никаким образом на него не воздействуют, либо же если они каким-либо образом компенсируют действие друг друга. Чтобы изменить скорость движения, на тело необходимо воздействовать с какой-либо силой, и, конечно, результат воздействия одинаковой силы на разные по величине тела будет тоже различаться.
  2. Главная закономерность динамики утверждает, что чем больше равнодействующая сил, которые в текущий момент воздействуют на данное тело, тем больше полученное им ускорение. И, соответственно, чем больше масса тела, тем этот показатель меньше.
  3. Третий закон Ньютона сообщает, что любые два тела всегда взаимодействуют друг с другом по идентичной схеме: их силы имеют одну природу, являются эквивалентными по величине и обязательно имеют противоположное направление вдоль прямой, которая соединяет эти тела.
  4. Принцип относительности утверждает, что все явления, протекающие при одних и тех же условиях в инерциальных системах отсчета, проходят абсолютно идентичным образом.

Термодинамика

Школьный учебник, открывающий ученикам основные законы ("Физика. 7 класс"), знакомит их и с основами термодинамики. Ее принципы мы коротко рассмотрим далее.

Законы термодинамики, являющиеся базовыми в данной отрасли науки, имеют общий характер и не связаны с деталями строения конкретного вещества на уровне атомов. Кстати, эти принципы важны не только для физики, но и для химии, биологии, аэрокосмической техники и т. д.

Например, в названной отрасли существует не поддающееся логическому определению правило, что в замкнутой системе, внешние условия для которой неизменны, со временем устанавливается равновесное состояние. И процессы, продолжающиеся в ней, неизменно компенсируют друг друга.

Еще одно правило термодинамики подтверждает стремление системы, которая состоит из колоссального числа частиц, характеризующихся хаотическим движением, к самостоятельному переходу из менее вероятных для системы состояний в более вероятные.

А закон Гей-Люссака (его также называют утверждает, что для газа определенной массы в условиях стабильного давления результат деления его объема на абсолютную температуру непременно становится величиной постоянной.

Еще одно важное правило этой отрасли - первый закон термодинамики, который также принято называть принципом сохранения и превращения энергии для термодинамической системы. Согласно ему, любое количество теплоты, которое было сообщено системе, будет израсходовано исключительно на метаморфозу ее внутренней энергии и совершение ею работы по отношению к любым действующим внешним силам. Именно эта закономерность и стала базисом для формирования схемы работы тепловых машин.

Другая газовая закономерность - это закон Шарля. Он гласит, что чем больше давление определенной массы идеального газа в условиях сохранения постоянного объема, тем больше его температура.

Электричество

Открывает юным ученым интересные основные законы физики 10 класс школы. В это время изучаются главные принципы природы и закономерности действия электрического тока, а также другие нюансы.

Закон Ампера, например, утверждает, что проводники, соединенные параллельно, по которым течет ток в одинаковом направлении, неизбежно притягиваются, а в случае противоположного направления тока, соответственно, отталкиваются. Порой такое же название используют для физического закона, который определяет силу, действующую в существующем магнитном поле на небольшой участок проводника, в данный момент проводящего ток. Ее так и называют - сила Ампера. Это открытие было сделано ученым в первой половине девятнадцатого века (а именно в 1820 г.).

Закон сохранения заряда является одним из базовых принципов природы. Он гласит, что алгебраическая сумма всех электрических зарядов, возникающих в любой электрически изолированной системе, всегда сохраняется (становится постоянной). Несмотря на это, названный принцип не исключает и возникновения в таких системах новых заряженных частиц в результате протекания некоторых процессов. Тем не менее общий электрический заряд всех новообразованных частиц непременно должен равняться нулю.

Закон Кулона является одним из основных в электростатике. Он выражает принцип силы взаимодействия между неподвижными точечными зарядами и поясняет количественное исчисление расстояния между ними. Закон Кулона позволяет обосновать базовые принципы электродинамики экспериментальным образом. Он гласит, что неподвижные точечные заряды непременно взаимодействуют между собой с силой, которая тем выше, чем больше произведение их величин и, соответственно, тем меньше, чем меньше квадрат расстояния между рассматриваемыми зарядами и среды, в которой и происходит описываемое взаимодействие.

Закон Ома является одним из базовых принципов электричества. Он гласит, что чем больше сила постоянного электрического тока, действующего на определенном участке цепи, тем больше напряжение на ее концах.

Называют принцип, который позволяет определить направление в проводнике тока, движущегося в условиях воздействия магнитного поля определенным образом. Для этого необходимо расположить кисть правой руки так, чтобы линии магнитной индукции образно касались раскрытой ладони, а большой палец вытянуть по направлению движения проводника. В таком случае остальные четыре выпрямленных пальца определят направление движения индукционного тока.

Также этот принцип помогает выяснить точное расположение линий магнитной индукции прямолинейного проводника, проводящего ток в данный момент. Это происходит так: поместите большой палец правой руки таким образом, чтобы он указывал а остальными четырьмя пальцами образно обхватите проводник. Расположение этих пальцев и продемонстрирует точное направление линий магнитной индукции.

Принцип электромагнитной индукции представляет собой закономерность, которая объясняет процесс работы трансформаторов, генераторов, электродвигателей. Данный закон состоит в следующем: в замкнутом контуре генерируемая индукции тем больше, чем больше скорость изменения магнитного потока.

Оптика

Отрасль "Оптика" также отражает часть школьной программы (основные законы физики: 7-9 классы). Поэтому эти принципы не так сложны для понимания, как может показаться на первый взгляд. Их изучение приносит с собой не просто дополнительные знания, но лучшее понимание окружающей действительности. Основные законы физики, которые можно отнести к области изучения оптики, следующие:

  1. Принцип Гюйнеса. Он представляет собой метод, который позволяет эффективно определить в каждую конкретную долю секунды точное положение фронта волны. Суть его состоит в следующем: все точки, которые оказываются на пути у фронта волны в определенную долю секунды, в сущности, сами по себе становятся источниками сферических волн (вторичных), в то время как размещение фронта волны в ту же долю секунду является идентичным поверхности, которая огибает все сферические волны (вторичные). Данный принцип используется с целью объяснения существующих законов, связанных с преломлением света и его отражением.
  2. Принцип Гюйгенса-Френеля отражает эффективный метод разрешения вопросов, связанных с распространением волн. Он помогать объяснить элементарные задачи, связанные с дифракцией света.
  3. волн. Применяется в равной степени и для отражения в зеркале. Его суть состоит в том, что как ниспадающий луч, так и тот, который был отражен, а также перпендикуляр, построенный из точки падения луча, располагаются в единой плоскости. Важно также помнить, что при этом угол, под которым падает луч, всегда абсолютно равен углу преломления.
  4. Принцип преломления света. Это изменение траектории движения электромагнитной волны (света) в момент движения из одной однородной среды в другую, которая значительно отличается от первой по ряду показателей преломления. Скорость распространения света в них различна.
  5. Закон прямолинейного распространения света. По своей сути он является законом, относящимся к области геометрической оптики, и заключается в следующем: в любой однородной среде (вне зависимости от ее природы) свет распространяется строго прямолинейно, по кратчайшему расстоянию. Данный закон просто и доступно объясняет образование тени.

Атомная и ядерная физика

Основные законы квантовой физики, а также основы атомной и ядерной физики изучаются в старших классах средней школы и высших учебных заведениях.

Так, постулаты Бора представляют собой ряд базовых гипотез, которые стали основой теории. Ее суть состоит в том, что любая атомная система может оставаться устойчивой исключительно в стационарных состояниях. Любое излучение или поглощение энергии атомом непременно происходит с использованием принципа, суть которого следующая: излучение, связанное с транспортацией, становится монохроматическим.

Эти постулаты относятся к стандартной школьной программе, изучающей основные законы физики (11 класс). Их знание является обязательным для выпускника.

Основные законы физики, которые должен знать человек

Некоторые физические принципы, хоть и относятся к одной из отраслей данной науки, тем не менее носят общий характер и должны быть известны всем. Перечислим основные законы физики, которые должен знать человек:

  • Закон Архимеда (относится к областям гидро-, а также аэростатики). Он подразумевает, что на любое тело, которое было погружено в газообразное вещество или в жидкость, действует своего рода выталкивающая сила, которая непременно направлена вертикально вверх. Эта сила всегда численно равна весу вытесненной телом жидкости или газа.
  • Другая формулировка этого закона следующая: тело, погруженное в газ или жидкость, непременно теряет в весе столько же, сколько составила масса жидкости или газа, в который оно было погружено. Этот закон и стал базовым постулатом теории плавания тел.
  • Закон всемирного тяготения (открыт Ньютоном). Его суть состоит в том, что абсолютно все тела неизбежно притягиваются друг к другу с силой, которая тем больше, чем больше произведение масс данных тел и, соответственно, тем меньше, чем меньше квадрат расстояния между ними.

Это и есть 3 основных закона физики, которые должен знать каждый, желающий разобраться в механизме функционирования окружающего мира и особенностях протекания процессов, происходящих в нем. Понять принцип их действия достаточно просто.

Ценность подобных знаний

Основные законы физики обязаны быть в багаже знаний человека, независимо от его возраста и рода деятельности. Они отражают механизм существования всей сегодняшней действительности, и, в сущности, являются единственной константой в непрерывно изменяющемся мире.

Основные законы, понятия физики открывают новые возможности для изучения окружающего мира. Их знание помогает понимать механизм существования Вселенной и движения всех космических тел. Оно превращает нас не в просто соглядатаев ежедневных событий и процессов, а позволяет осознавать их. Когда человек ясно понимает основные законы физики, то есть все происходящие вокруг него процессы, он получает возможность управлять ими наиболее эффективным образом, совершая открытия и делая тем самым свою жизнь более комфортной.

Итоги

Некоторые вынуждены углубленно изучать основные законы физики для ЕГЭ, другие - по роду деятельности, а некоторые - из научного любопытства. Независимо от целей изучения данной науки, пользу полученных знаний трудно переоценить. Нет ничего более удовлетворяющего, чем понимание основных механизмов и закономерностей существования окружающего мира.

Не оставайтесь равнодушными - развивайтесь!

1. Любая рабочая программа уже устарела.

2. Любая программа стоит дороже и составляется дольше, чем могла бы.

3. Если программа представляет практическую ценность, в нее приходится вносить изменения.

4. Если программа бесполезна, ее нужно записать.

5. Любая программа растет до тех пор, пока не заполнит всю доступную память.

6. Ценность программы пропорциональна количеству выдаваемых ей данных.

7. Сложность программы возрастает до тех пор, пока не превысит способностей программиста, который должен с ней работать.

Постулаты программирования Туатмена

1. Если пробная система работает безупречно, не будут функционировать все последующие.

3. Карточки в картотеке отдела кадров, которые невозможно перепутать, оказываются перепутанными.

4. Взаимозаменяемые пленки не являются таковыми.

5. Если на компьютере стоит защита от записи нежелательных данных, найдется изобретательный идиот, который изыщет способ обойти ее и ввести свои данные.

Закон Бука

Новое программное обеспечение плюс работник равно устаревшему программному обеспечению.

Компьтерные законы по Голубу

1. Нечеткая формулировка целей проекта используется для того, чтобы избежать неприятных минут при определении предполагаемых затрат на осуществление этих целей.

2. Реализация плохо спланированного проекта занимает в три раза больше времени, чем могла бы; тщательно спланированного проекта - в два раза.

3. Усилия, направленные на корректировку курса разработки проекта, растут в геометрической прогрессий.

4. Группы по реализации того или иного проекта очень не любят сдавать еженедельные рапорты о своих успехах, потому что это ярко демонстрирует отсутствие успехов.

Закон кибернетической этмологии

В программе всегда найдется еще один "жучок" (от англ. "bug", здесь: ошибка в программе).

Принцип Шоу

Если вы разработали систему, понятную даже дураку, то только дурак и будет ею пользоваться.

Принцип IBM

Машина должна работать, а человек - думать.

Замечание Э. Дейкстра

Если отладка - процесс удаления ошибок, то программирование должно быть процессом их внесения.

Закон Грида

Машинная программа выполняет то, что вы ей приказали делать, а не то, что бы вы хотели, чтобы она делала.

Компьютерная аксиома Лео Бейзера

Закладывая что-то в ЭВМ, помните, куда вы это положили.

Руководство по системному программированию Штейнбаха

Никогда не выявляйте в программе ошибки, если не знаете, что с ними дальше делать.

Дополнение Марка Дэвисона

Вы уже дошли до состояния, когда у вас нет времени, чтобы разрешить те проблемы, которые отнимают у вас все время?

Закон ненадежности

Ошибаться человеку свойственно, но окончательно все запутать может только компьютер.

Законы надежности Джилба

1. Компьютеры ненадежны, но люди еще ненадежнее.

2. Любая система, зависящая от человеческой надежности, ненадежна.

3. Число ошибок, которые нельзя обнаружить, бесконечно, в противовес числу ошибок, которые можно обнаружить - оно конечно по определению.

4. В поиски повышения надежности будут вкладываться средства до тех пор, пока они не превысят величину убытков от неизбежных ошибок или пока кто-нибудь не потребует, чтобы была сделана хоть какая-то полезная работа.

Закон компьютера применительно к Алу

Машина считает, человек принимает (решения).

Закон Чарльза Портмана (ICL)

Когда кажется, что все уже работает, все объединено в систему - вам еще осталось работы на четыре месяца.